Technical support: support@abbkine.com

Website: https://www.abbkine.com

CheKine™ Micro NAD⁺ Kinase (NADK) Activity Assay Kit

Cat #: KTB1022 Size: 48 T/96 T

[-]	Micro NAD ⁺ Kinase (NADK) Activity Assay Kit				
REF	Cat #: KTB1022	LOT	Lot #: Refer to product label		
	Applicable samples: Serum, Plasma, Animal and Plant Tissues, Cells, Bacteria				
Å	Storage: Stored at -20°C for 12 months, protected from light				

Assay Principle

NAD⁺ Kinase (NADK, EC 2.7.1.23) is widely found in animals, plants, microorganisms and cells. It is the only enzyme that can catalyze the phosphorylation of NAD⁺ to NADP⁺ in organisms. It can catalyze the phosphorylation reaction of NAD(H) with ATP or inorganic polyphosphate [poly(P)] as a phosphoryl donor to generate NADP(H). Therefore, NADK plays an important role in the synthesis of NADP(H) and the regulation of the balance between NAD(H) and NADP(H). CheKine™ Micro NAD⁺ Kinase (NADK) Activity Assay Kit provides a simple method for detecting NADK activity in a variety of biological samples such as serum, plasma, animal and plant tissues, cells, bacteria. In the assay, NADK catalyzes the phosphorylation of NAD⁺ to produce NADP⁺; NADP⁺ can be reduced to NADPH by Glucose-6-Phosphate dehydrogenase. NADPH has a characteristic absorption peak at 340 nm. The rate of NADPH increase at 340 nm can reflect NADK activity.

Materials Supplied and Storage Conditions

		Size	24
Kit components	48 T	96 T	Storage conditions
Extraction Buffer	50 mL	100 mL	4°C
Assay Buffer	5 mL	10 mL	4℃
Assay Buffer II	12.5 mL	25 mL	4℃
Substrate Mix	1	1	-20°C, protected from light
Enzyme Mix	1	1	-20°C, protected from light

Materials Required but Not Supplied

- · Microplate reader or ultraviolet spectrophotometer capable of measuring absorbance at 340 nm
- 96-well UV plate or microquartz cuvette, precision pipettes, disposable pipette tips
- · Refrigerated centrifuge, incubate, water bath
- · Deionized water

Version 20220916

· Dounce homogenizer (for tissue samples)

Reagent Preparation

Extraction Buffer: Ready to use as supplied. Equilibrate to room temperature before use. Store at 4°C.

Assay Buffer I: Ready to use as supplied. Equilibrate to room temperature before use. Store at 4°C.

Assay Buffer II: Ready to use as supplied. Equilibrate to room temperature before use. Store at 4°C.

Working Reagent | Preparation: Prepare Substrate Mix by mixing 2.5 mL (48 T)/5 mL (96 T) Assay Buffer | before use. Aliquot the unused reagents and store them at -20°C, protected from light. Avoid freezing and thawing.

Working Reagent II Preparation: Prepare Enzyme Mix by mixing 9 mL (48 T)/18 mL (96 T) Assay Buffer II before use. Aliquot the unused reagents and store them at -20°C, protected from light. Avoid freezing and thawing.

Note: Substrate Mix and Enzyme Mix must be placed on ice during the measurement process. The reaction temperature has an influence on the results, so please keep it at 25°C (general species) or 37°C (mammal).

Sample Preparation

- 1. Serum or plasma samples: Directly test.
- 2. Animal tissue samples: Wash tissues with cold PBS to remove blood as much as possible. Weigh 0.1 g tissue, add 1 mL Extraction Buffer and homogenize on ice. Centrifuge at 8,000 g for 10 min at 4°C. Use supernatant for assay, and place it on ice to be tested.
- 3. Cells or bacteria samples: Collect 5×10⁶ cells or bacteria into the centrifuge tube, wash cells or bacteria with cold PBS, discard the supernatant after centrifugation; add 1 mL Extraction Buffer to ultrasonically disrupt the cells or bacteria 5 min (power 20% or 200 W, ultrasonic 3 s, interval 7 s, repeat 30 times). Centrifuge at 8,000 g for 10 min at 4°C. Use supernatant for assay, and place it on ice to be tested.
- 4. Plant tissue samples: Wash plant with cold PBS to remove impurities as much as possible. Weigh 0.1 g tissue, add 1 mL Extraction Buffer and homogenize on ice. Centrifuge at 8,000 g for 10 min at 4°C. Use supernatant for assay, and place it on ice to be tested.

Note: It will be better to quantify the total protein with Protein Quantification Kit (BCA Assay), Cat #: KTD3001, if the content is calculated by protein concentration.

Assay Procedure

- 1. Preheat the microplate reader or ultraviolet spectrophotometer for more than 30 min, and adjust the wavelength to 340 nm, ultraviolet spectrophotometer was returned to zero with deionized water.
- 2. Preheat Assay Buffer I and Assay Buffer II in a 25°C (general species) or 37°C (mammal) water bath for more than 15 min.
- 3. Set the control tube and the test tube, and operate according to the sample addition and reaction process in the following table (operate using EP Tubes):

Reagent	Control Tube (μL)	Test Tube (μL)
Sample	20	20
Working Reagent	0	80
Assay Buffer I	80	0

Mix well, incubate at 25°C (general species) or 37°C (mammal) for 15 min, boil immediately for 2 min (cover tightly to prevent water loss) and cool in an ice bath, room temperature, 10,000 g, centrifuge for 10 min, discard precipitation and keep the supernatant.

4. Take 40 μ L of the supernatant from each tube and add it to the 96-well UV plate or microquartz cuvette, then add 160 μ L Working Reagent || per well, and mix quickly.

Version 20220916

5. Incubate for 15 min, read optical density at 340 nm. ΔA=A_{Test}-A_{Control}.

Note: Every sample needs to set a control tube. In order to guarantee the accuracy of experimental results, need to do a pre-experiment with 2-3 samples.

Data Analysis

Note: We provide you with calculation formulae, including the derivation process and final formula. The two are exactly equal. It is suggested that the concise calculation formula in bold is final formula.

- A. Calculation formulae based on 96-well UV plates are as below
- 1. Calculation of NADK activity in serum (plasma)

Active unit definition: 1 nmol NADP was produced per min in 1 mL serum (plasma) reaction system is defined as a unit of enzyme activity.

NADK (nmol/min/mL)=[$\Delta A \times V_{Total} \div (\epsilon \times d) \times 10^9$] $\div V_{Sample} \div T$ =107.18× ΔA

- 2. Calculation of NADK activity in tissues, bacteria or cells
- (1) Calculated by protein concentration

Active unit definition: 1 nmol NADP was produced per min in 1 mg tissue protein reaction system is defined as a unit of enzyme activity.

NADK (nmol/min/mg prot)= $[\Delta A \times V_{Total} \div (\epsilon \times d) \times 10^9] \div (Cpr \times V_{Sample}) \div T = 107.18 \times \Delta A \div Cpr$

(2) Calculated by fresh weight of samples

Active unit definition: 1 nmol NADP was produced per min in 1 g tissue reaction system is defined as a unit of enzyme activity.

NADK (nmol/min/g fresh weight)= $[\Delta A \times V_{Total} \div (\epsilon \times d) \times 10^9] \div (W \times V_{Sample} \div V_{Sample Total}) \div T = 107.18 \times \Delta A \div W$

(3) Calculated by bacteria or cell numbers

Active unit definition: 1 nmol NADP was produced per min in 10⁴ bacteria or cells reaction system is defined as a unit of enzyme activity.

NADK (nmol/min/10⁴)= $[\Delta A \times V_{Total} \div (\epsilon \times d) \times 10^9] \div (500 \times V_{Sample} \div V_{Sample Total}) \div T = 0.214 \times \Delta A$

Where: V_{Total} : Total reaction volume, 1×10^{-4} L; ϵ : NADH molar extinction coefficient, 6.22×10^3 L/mol/cm; d: 96-well UV plates diameter, 0.5 cm; 10^9 : 1 mol= 10^9 nmol; V_{Sample} : sample volume added, 0.02 mL; V_{Sample} Total: Extraction Buffer added to samples, 1 mL; T: reaction time, 15 min; Cpr: sample protein concentration, mg/mL; W: sample weight, g; 500: Total number of bacteria or cells, 5×10^6 .

B. Microquartz cuvette calculation formula

The optical diameter d: 0.5 cm in the above calculation formula can be adjusted to d: 1 cm for calculation.

Recommended Products

Catalog No.	Product Name		
KTB1020	CheKine™ Micro Coenzyme ∣ NAD(H) Assay Kit		
KTB1021	CheKine™ Micro NADH Oxidase (NOX) Assay Kit		

Disclaimer

The reagent is only used in the field of scientific research, not suitable for clinical diagnosis or other purposes.

Version 20220916